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● Goal: estimate probabilistic expectations 
𝔼"[𝑓] of functions 𝑓(𝑞) on a 𝐷-
dimensional sample space 𝑞 ∈ 𝒬, w.r.t. a 
probability distribution 𝜋 𝑞 .

𝔼" 𝑓 = .
𝒬
𝑓(𝑞)𝜋 𝑞 d𝑞

● Typically 𝜋 𝑞 decreases quickly for large 
𝑞 (assuming mode at 𝑞 = 0), but
d𝑞 = ∏234

5 d𝑞2 ∝ |𝑞|584d|𝑞|.
● The typical set contributes most to 𝔼" 𝑓 .

Computing expectations by exploring probability distributions
8 BETANCOURT
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Fig 3. In high dimensions a probability density, ⇡(q), will concentrate around its mode, but the volume over
which we integrate that density, dq, is much larger away from the mode. Contributions to any expectation
are determined by the product of density and volume, ⇡(q) dq, which then concentrates in a nearly-singular
neighborhood called the typical set (grey).

averaging over the typical set instead of the entirety of parameter space. Consequently, in
order to compute expectations e�ciently, we have to be able to identify, and then focus
our computational resources into, the typical set (Figure 4).

This helps to explain, for example, why brute force methods like naive quadrature scale
so poorly with dimension. A grid of length N distributed uniformly in a D-dimensional
parameter space requires ND points and hence ND evaluations of the integrand. Unless N
is incredibly large, however, it is unlikely that any of these points will intersect the narrow
typical set, and the exponentially-growing cost of averaging over the grid yields worse and
worse approximations to expectations. In general, framing algorithms by how they quantify
the typical set is a powerful way to quickly intuit how an algorithm will perform in practice.

Of course, understanding why we want to focus on the typical set in only the first step.
How to construct an algorithm that can quantify the typical set of an arbitrary target
distribution is another problem altogether. There are many strategies for this task, but
one of the most generic, and hence most useful in applied practice, is Markov chain Monte

Carlo (Robert and Casella, 1999; Brooks et al., 2011).

2. MARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo uses a Markov chain to stochastically explore the typical set,
generating a random grid across the region of high probability from which we can con-
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● Typical sets may have complicated 
geometry for high 𝐷. 

Markov chain Monte Carlo
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Fig 4. In high-dimensional parameter spaces probability mass, ⇡(q) dq, and hence the dominant contribu-
tions to expectations, concentrates in a neighborhood called the typical set. In order to accurately estimate
expectations we have to be able to identify where the typical set lies in parameter space so that we can focus
our computational resources where they are most e↵ective.

struct accurate expectation estimates. Given su�cient computational resources a properly
designed Markov chain will eventually explore the typical set of any distribution. The more
practical, and much more challenging question, however, is whether a given Markov chain
will explore a typical set in the finite time available in a real analysis.

In this section I’ll introduce a more substantial definition of Markov chain Monte Carlo
and discuss both its ideal and pathological behaviors. Finally we’ll consider how to im-
plement Markov chain Monte Carlo in practice and see how fragile of an endeavor it can
be.

2.1 Estimating Expectations with Markov Chains

A Markov chain is a progression of points in parameter space generated by sequentially
applying a random map known as a Markov transition. Alternatively, we can think of a
Markov transition as a conditional probability density, T(q0 | q), defining to which point,
q
0, we are most likely to jump from the initial point, q (Figure 5).
An arbitrary Markov chain will simply wander through parameter space and will not be

of any particular use in computing expectations. Something very special happens, however,
if the Markov transition preserves the target distribution,

⇡(q) =

Z

Q
dq0 ⇡(q0)T(q | q0).

More intuitively, this condition implies that if we generated a ensemble of samples from
the target distribution and applied the transition then we would get a new ensemble that
was still distributed according to the target distribution.

10 BETANCOURT

(a) (b) (c)

Fig 5. (a) A Markov chain is a sequence of points in parameter space generated by a Markov transition
density (green) that defines the probability of a new point given the current point. (b) Sampling from that
distribution yields a new state in the Markov chain and a new distribution from which to sample. (c)
Repeating this process generates a Markov chain that meanders through parameter space.

Fig 6. When a Markov transition (green) preserves the target distribution, it concentrates towards the typical
set (red), no matter where it is applied. Consequently, the resulting Markov chain will drift into and then
across the typical set regardless of its initial state, providing a powerful quantification of the typical set from
which we can derive accurate expectation estimators.

So long as this condition holds, at every initial point the Markov transition will concen-
trate towards the typical set. Consequently, no matter where we begin in parameter space
the corresponding Markov chain will eventually drift into, and then across, the typical set
(Figure 6).

Given su�cient time, the history of the Markov chain, {q0, . . . , qN}, denoted samples

generated by the Markov chain, becomes a convenient quantification of the typical set.
In particular, we can estimate expectations across the typical set, and hence expectations
across the entire parameter space, by averaging the target function over this history,

f̂N =
1

N

NX

n=0

f(qn) .

As we run the Markov chain for longer and longer, it will better explore the typical set
and, up to some technicalities, these Markov chain Monte Carlo estimators will converge

● Markov chains
𝑞4, … , 𝑞; are the

sequences created by 
Markov transitions 
𝕋 𝑞, 𝑞′ on 𝒬. If 𝕋
preserves 𝜋 𝑞 , then 𝑞;
approaches the typical 
set.
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● Initial chain yields biased 

estimator >𝑓 = 4
;
∑@34; 𝑓 𝑞@ .

● As chain explores typical set, 
the bias reduces quickly.

● Further bias reduction takes 
very long chains. 

Ideal behavior
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Fig 7. Under ideal circumstances, a Markov chain explores the target distribution in three phases. (a) First
the Markov chain converges to the typical set and estimators su↵er from initial but ultimately transient
biases. (b) Once the Markov chain finds the typical set and makes the first sojourn through it, this initial
bias rapidly vanishes and the estimators become much more accurate. (c) As the Markov chain continues it
explores more details of the typical set, gradually reducing the precision of the Markov chain Monte Carlo
estimators towards zero.
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● Given 𝑞, to accomplish 𝕋, propose a 
random 𝑞′ from a symmetric distribution on 
ℚ(𝑞, 𝑞′), and accept 𝑞′ with probability

𝑎 𝑞D|𝑞 = min 1, " ID
" I

that rejects 

relatively improbable steps.
● If the ℚ variance is large, then 𝜋 𝑞′ will 

often be small and 𝑞′ will rarely be 
accepted.

● If the ℚ variance is small, 𝑞′ will often be 
accepted but it will take “forever” to 
explore the typical set.

Metropolis-Hastings algorithm
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(a) (b)

Fig 10. In high dimensions, the Random Walk Metropolis proposal density (green) is strongly biased towards
the outside of the typical set where the target density, and hence the Metropolis acceptance probability
vanishes. (a) If the proposal variances are large then the proposals will stray too far away from the typical
set and are rejected. (b) Smaller proposal variances stay within the typical set and hence are accepted, but
the resulting transition density concentrates tightly around the initial point. Either way we end up with a
Markov chain that explores the typical set very, very slowly.

itself. Specifically, we need transitions that can follow those contours of high probability
mass, coherently gliding through the typical set (Figure 11).

Hamiltonian Monte Carlo is the unique procedure for automatically generating this
coherent exploration for su�ciently well-behaved target distributions. In this section I will
first introduce some intuition to motivate how we can generate the desired exploration
by carefully exploiting the di↵erential structure of the target probability density. I will
then discuss the procedure more formally, ending with the complete construction of the
Hamiltonian Markov transition.

3.1 Informing E↵ective Markov Transitions

How can we distill the geometry of the typical set into information about how to move
through it? When the sample space is continuous, a natural way of encoding this direction
information is with a vector field aligned with the typical set (Figure 12). A vector field is
the assignment of a direction at every point in parameter space, and if those directions are
aligned with the typical set then they act as a guide through this neighborhood of largest
target probability.

In other words, instead of fumbling around parameter space with random, uninformed
jumps, we can follow the direction assigned to each at point for a small distance. By
construction this will move us to a new point in the typical set, where we will find a new
direction to follow. Continuing this process traces out a coherent trajectory through the
typical set that e�ciently moves us far away from the initial point to new, unexplored
regions of the typical set as quickly as possible.
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● There are many more directions obliquely off
the typical set than strictly within it. We want 
the chain to stay in or close to the typical set.

● 𝜋 𝑞, 𝑝 = 𝜋 𝑝|𝑞 𝜋 𝑞 introduces momentum 
p as an auxiliary parameter so that 
marginalization projects the phase-space
chain down to the desired typical set.

● In physics, energy-conserving dynamics in a 
phase space of twice as many dimensions 
(𝑞, 𝑝) are constrained to a manifold 𝐻84 𝐸 =
𝑞, 𝑝 |𝐻 𝑞, 𝑝 = − log 𝜋 𝑞, 𝑝 = 𝐸 .

Foundations of Hamiltonian MC

18 BETANCOURT

Fig 11. Most Markov transitions are di↵usive, concentrating around the initial point such that the corre-
sponding Markov chains linger in small neighborhoods of the typical set for long periods of time. In order
to maximize the utility of our computational resources we need coherent Markov transitions that are able
to glide across the typical set towards new, unexplored neighborhoods.

24 BETANCOURT
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Fig 18. A defining feature of conservative dynamics is the preservation of volume in position-momentum
phase space. For example, although dynamics might compress volumes in position space, the corresponding
volume in momentum space expands to compensate and ensure that the total volume is invariant. Such
volume-preserving mappings are also known as shear transformations.

Fig 19. By constructing a probability distribution on phase space that marginalizes to the target distribution,
we ensure that the typical set on phase space projects to the typical set of the target distribution. In particular,
if we can construct trajectories that e�ciently explore the joint distribution (black) they will project to
trajectories that e�ciently explore the target distribution (green).

28 BETANCOURT
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Fig 21. Phase space naturally decomposes into level sets of the Hamiltonian, H�1(E). Instead of specifying
a point in phase space with its position and momentum, we can specify it with an energy, E, and its position
on the corresponding level set, ✓E 2 H

�1(E).

Hamiltonian trajectory explores a level set while the intermediate projections and lifts de-
fine a random jump between the level sets themselves. Consequently, the entire Hamiltonian
Markov chain decouples into two distinct phases: deterministic exploration of individual
level sets and a stochastic exploration between the level sets themselves (Figure 22b).

This decoupling makes it particularly convenient to analyze the e�ciency of each phase,
and hence the e�ciency of the overall Hamiltonian Markov transition. For example, the
e�cacy of the deterministic exploration is determined by how long the Hamiltonian tra-
jectories are integrated and, consequently, how completely they explore the corresponding
level sets. The cost of this phase, however, is ultimately proportional to the total integra-
tion time. The integration time needed to explore just enough of each level set, and hence
the overall e�ciency of the deterministic exploration, depends on the geometry of the en-
ergy level sets. The more uniform and regular the level sets, the faster the trajectories will
explore for a given integration time.

Similarly, the performance of the stochastic exploration is determined by how quickly
the random walk can di↵use across the energies typical to the marginal energy distribu-
tion. Writing ⇡(E | q) as the transition distribution of energies induced by a momentum
resampling at a given position, q, the di↵usion speed depends on how heavy-tailed the
marginal energy distribution is relative to ⇡(E | q). For example, if this energy transition
distribution is narrow relative to the marginal energy distribution (Figure 23a), then the
random walk will proceed very slowly, taking many costly transitions to completely explore
the target distribution. If the energy transition distribution is similar to the marginal en-
ergy distribution (Figure 23b), however, then we will generate nearly-independent samples
from the marginal energy distribution at every transition, rapidly surveying the relevant
energies with maximal e�ciency.

By analyzing how these algorithmic degrees of freedom in the Hamiltonian Markov
transition interact with the target distribution to determine the microcanonical geometry,
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● The 2𝐷-phase-space trajectory 𝑞, 𝑝 ↦ 𝜙T 𝑞, 𝑝 is given 

by U
UT

𝑞, 𝑝 = V
VW
, − V

VI
𝐻 = V

VW
, − V

VI
𝐾 − 0, VY

VI
, 

where 𝐾 = − log 𝜋 𝑝|𝑞 and 𝑉 = − log 𝜋 𝑞 = 𝐻 − 𝐾
are the effective kinetic and potential energies.

● Then by the chain rule
U[
UT
= V

VI
, V
VW

𝐻 \ U
UT

𝑞, 𝑝 = 0, energy is
conserved by 𝜙T (also see Liouville's theorem).

● Now 𝕋 𝑞, 𝑞′ has been decomposed using 𝜋 𝑝|𝑞 , 𝜙T
and 𝑞2 = 𝑞, 𝑝 2.

● Successive 𝕋 𝑞, 𝑞′ ⟺ phase-space Markov chain.

Phase space and Hamilton’s equations

A CONCEPTUAL INTRODUCTION TO HAMILTONIAN MONTE CARLO 27

q

p

Fig 20. Every Hamiltonian Markov transition is comprised of a random lift from the target parameter space
onto phase space (light red), a deterministic Hamiltonian trajectory through phase space (dark red), and a
projection back down to the target parameter space (light red).

In order to be able to optimize the application of the Hamiltonian Monte Carlo method
and ensure robust performance, we need to understand exactly how these degrees of free-
dom interact with the target distribution. Although this seems like a daunting task, we
can facilitate it by exploiting the latent geometry of Hamiltonian Monte Carlo itself. In
particular, the analysis is make much easier by considering a di↵erent view of phase space.

4.1 The Natural Geometry of Phase Space

One of the characteristic properties of Hamilton’s equations is that they conserve the
value of the Hamiltonian. In other words, every Hamiltonian trajectory is confined to an
energy level set,

H
�1(E) = {q, p | H(q, p) = E} ,

which, save for some ignorable exceptions, are all (2D � 1)-dimensional, compact surfaces
in phase space. In fact, once we’ve removed any singular level sets, the entirety of phase
space neatly decomposes, or foliates into concentric level sets (Figure 21). Consequently,
we can specify any point in phase space by first specifying the energy of the level set it
falls on, E, and the position within that level set, ✓E (Figure 21).

Correspondingly the canonical distribution on phase space admits a microcanonical de-

composition,
⇡(q, p) = ⇡ (✓E | E)⇡(E) ,

across this foliation. The conditional distribution over each level set, ⇡ (✓E | E), is called
the microcanonical distribution, while the distribution across the level sets, ⇡(E), is called
the marginal energy distribution.

Because they are derived from the same geometry, this microcanonical decomposition is
particularly well-suited to analyzing the Hamiltonian transition. To see this more clearly,
consider a Hamiltonian Markov chain consisting of multiple transitions (Figure 22a). Each
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Fig 22. (a) Each Hamiltonian Markov transition lifts the initial state onto a random level set of the
Hamiltonian, which can then be explored with a Hamiltonian trajectory before projecting back down to the
target parameter space. (b) If we consider the projection and random lift steps as a single momentum
resampling step, then the Hamiltonian Markov chain alternates between deterministic trajectories along
these level sets (dark red) and a random walk across the level sets (light red).

(a) (b)

Fig 23. The momentum resampling in a Hamiltonian Markov transition randomly changes the energy, in-
ducing a random walk between level sets. (a) When the energy transition distribution, ⇡(E | q) is narrow
relative to the marginal energy distribution, ⇡(E), this random walk will explore the marginal energy dis-
tribution only very slowly, requiring many expensive transitions to survey all of the relevant energies. (b)
On the other hand, when the two distributions are well-matched the random walk will explore the marginal
energy distribution extremely e�ciently.
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https://en.wikipedia.org/wiki/Liouville%27s_theorem_(Hamiltonian)
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● The parameter 𝑡 and formulation of 𝐾
provide free parameters to be optimally 
tuned.

● Longer 𝑡 ⟹ more exploration of 
𝐻84 𝐸 , but also costs more 
computation and may become redundant 
after 𝐻84 𝐸 is explored.

● Generally 𝑡 = 𝑇 𝑞, 𝑝 should be chosen 
around when the ESS starts to plateau.

● ESS ≈ corr matrix 84
g, according

to Leinster.

Efficient HMC
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Fig 24. (a) Temporal averages along a Hamiltonian trajectory, ET , converge to the corresponding spatial
expectation over its orbit, E�, as the integration time, T , increases. (b) Correspondingly, a uniform sample
from the trajectory converges to a sample from the microcanonical distribution restricted to the trajectory’s
orbit, here represented by the e↵ective sample size. Typically this convergence is initially rapid and super-
linear before settling into an asymptotic regime where the convergence continues only with the square of the
integration time. (c) Because the cost of generating each trajectory scales with the integration time, those
integration times that identify the transition between these two regimes will yield optimal performance.

and the trajectory grows. In other words, as the integration time grows the temporal
expectation over the trajectory converges to the spatial expectation over its orbit.

The performance of the Hamiltonian transition, however, depends on the rate at which
these expectations converge. Given typical regularity conditions, the temporal expecta-
tion will initially converges toward the spatial expectation quite rapidly (Figure 24a, b),
consistent with our intuition that coherent exploration is extremely e↵ective. Eventually,
however, that convergence slows, and we enter an asymptotic regime where any benefit of
exploration comes at an ever increasing cost. The optimal integration time straddles these
two regimes, exploiting the coherent exploration early on but not wasting computation on
the diminishing returns of long integration times (Figure 24c).

This optimization criterion also has a helpful geometric interpretation. The superlinear
regime corresponds to the first sojourn around the orbit of the trajectory, where every new

https://golem.ph.utexas.edu/category/2014/12/effective_sample_size.html
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● The parameter 𝑡 and form of 𝐾 provide free parameters to be optimally tuned.
● It often makes sense to measure distance in 𝒬 using the Mahalanobis norm

𝑞 − 𝑞′ \ 𝑀 \ 𝑞 − 𝑞′ , where 𝑀 = 𝔼" \ −𝜇 ⊗ \ −𝜇 84 is the precision 
(inverse covariance) matrix and 𝜇 = 𝔼"[\].

● Then in order to conserve phase-space volume, one should measure momentum 
differences by 𝑝 − 𝑝′ \ 𝑀84 \ 𝑝 − 𝑝′ .

● By connecting with zero-mean Gaussian, we’re led to 𝐾 = 4
k
𝑝 \ 𝑀84 \ 𝑝 +

log det 2𝜋𝑀.

● Including 𝑀 = 𝑀(𝑞) ≈ V
VI
⊗ V

VI
𝑉, the Hessian can help with variability on 𝒬.

Efficient HMC (cont.)
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● Most numerical integrators create accumulating 
deviation from 𝐻84 𝐸 .

● Symplectic integrators still create error, but by 
their conservation in phase space, it cannot 
accumulate. The chain conserves a “shadow 
Hamiltonian” exactly.

● It can still happen that too coarse a time step 𝜖 =
𝑇/𝐿 can cause sudden divergence; but it’s a useful 
indicator of strong 𝐻 𝑞, 𝑝 curvature.

Implementing HMC in practice
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Fig 27. The approximate solutions of most numerical integrators tend to drift away from the exact solutions.
As the system is integrated longer and longer, errors add coherently and push the numerical trajectory away
from the exact trajectory.

The main obstruction to implementing the Hamiltonian Monte Carlo method is generat-
ing the Hamiltonian trajectories themselves. Aside from a few trivial examples, we cannot
solve Hamilton’s equations exactly and any implementation must instead solve them nu-
merically. Numerical inaccuracies, however, can quickly compromise the utility of even
the most well-tuned Hamiltonian transition. Formally, integrating along the vector field
defined by Hamilton’s equations is equivalent to solving a system of ordinary di↵erential
equations on phase space. The more accurately we can numerically solve this system, the
more e↵ective our implementation will be.

While there is an abundance of ordinary di↵erential equations solvers, or numerical
integrators, available in popular computational libraries, most of those solvers su↵er from
an unfortunate drift. As we numerically solve longer and longer trajectories the error in the
solvers adds coherently, pushing the approximate trajectory away from the true trajectory
and the typical set that we want to explore (Figure 27). Because the magnitude of this drift
rapidly increases with the dimension of phase space, the utility of these generic numerical
integrators is limited to approximating only short Hamiltonian trajectories that ine�ciently
explore the energy level sets.

Fortunately, we can use the geometry of phase space itself to construct an extremely
powerful family of numerical solvers, known as symplectic integrators (Leimkuhler and
Reich, 2004; Hairer, Lubich and Wanner, 2006), that are robust to phenomena like drift
and enable high-performance implementations of the Hamiltonian Monte Carlo method.
In this section I will present the practical properties of symplectic integrators and how we
can correct for the small errors that they introduce. We will conclude with a discussion of
how to choose the best symplectic integrator for a given problem.

This section will follow the conceptual presentation of the review, but given the impor-
tance of the material a more thorough discussion of the technical details is available in
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Fig 28. Symplectic integrators generate numerical trajectories that are incompressible like the exact Hamil-
tonian trajectory they approximate. Consequently their approximation error cannot add up coherently to
pull the numerical trajectories away from the exact trajectories. Instead the numerical trajectories oscillate
around the exact level set, even as we integrate for longer and longer times.

Appendix A.

5.1 Symplectic Integrators

Symplectic integrators are powerful because the numerical trajectories they generate
exactly preserve phase space volume, just like the Hamiltonian trajectories they are ap-
proximating. This incompressibility limits how much the error in the numerical trajectory
can deviate from the energy of the exact trajectory. Consequently, the numerical trajecto-
ries cannot drift away from the exact energy level set, instead oscillating near it even for
long integration times (Figure 28).

Conveniently for implementations, symplectic integrators are also straightforward to
implement in practice. For example, if the probabilistic distribution of the momentum is
chosen to be independent of position, as with the Euclidean-Gaussian kinetic energy, then
we can employ the deceptively simple leapfrog integrator. Given a time discretization, or
step size, ✏, the leapfrog integrator simulates the exact trajectory as

q0  q, p0  p

for 0  n < xT/✏ y do

p
n+ 1

2
 pn � ✏

2
@V

@q
(qn)

qn+1  qn + ✏ p
n+ 1

2

pn+1  p
n+ 1

2
� ✏

2
@V

@q
(qn+1)

end for.

This simple but precise interleaving of discrete momentum and position updates ensures
exact volume preservation on phase space, and hence the accurate numerical trajectories
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Fig 29. When the exact trajectories lie on energy level sets with regions of high curvature, the numerical
trajectories generated by symplectic integrators can diverge, rapidly flying o↵ towards the boundaries of phase
space. Unlike the slower drift of generic numerical integrators, these divergences, and hence the failure of
the symplectic integrator to provide an accurate solution, are straightforward to identify in practice.

we need to realize the potential of a Hamiltonian transition.
There is, however, one important exception to performance of symplectic integrators.

Long time accuracy can be compromised when the exact energy level sets feature neigh-
borhoods of high curvature that the finite time discretization is not able to resolve. These
neighborhoods induce a divergence that almost immediately propels the numerical trajec-
tory towards infinite energies (Figure 29). This distinctive behavior proves beneficial in
practice, however, because it makes the failures of a symplectic integrator straightforward
to identify and hence diagnose.

Employing symplectic integrators provides the opportunity to translate the theoretical
performance of the Hamiltonian Monte Carlo method into a practical implementation.
There remain, however, two obstructions to realizing this translation. First, even though
symplectic integrators are highly accurate, the small errors they do introduce will bias the
resulting Hamiltonian transitions without an exact correction. Second, we have to be able
to select a symplectic integrator well-suited to a given target distribution.

5.2 Correcting for Symplectic Integrator Error

One particularly natural strategy for correcting the bias introduced by the error in a
symplectic integrator is to treat the Hamiltonian transition as the proposal for a Metropolis-
Hastings scheme on phase space. If we can construct the acceptance probability analytically
then this correction will yield an exact sample from the canonical distribution on phase
space which then projects to an exact sample from our target distribution. In order to con-
struct that acceptance probability, however, we have to carefully augment the Hamiltonian
transition.

For example, consider a simple scheme where we integrate the initial state, (q0, p0), for-


