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https://arxiv.org/abs/1701.02434
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Computing expectations by exploring probability distributions

® Goal: estimate probabilistic expectations
E,;[f] of functions f(q) on a D-
dimensional sample space g € Q, w.r.t. a
probability distribution m(q).

Ex[f] = jQ fF(@n(q)dq

® Typically m(q) decreases quickly for large
|g| (assuming mode at g = 0), but
dq = 1~ dg; « |q|°~dlql.

® The typical set contributes most to E[f].
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Markov chain Monte Carlo

® Typical sets may have complicated
geometry for high D.

® Markov chains
(qq, ..., q) are the
sequences created by
Markov transitions
T(q,q ) on Q. If T
preserves m(q), then q;
approaches the typical
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Ideal behavior

® Initial chain yields biased

estimator f = %ZlLﬂ f(qp).
® As chain explores typical set,
the bias reduces quickly.
® Further bias reduction takes
very long chains.
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Metropolis-Hastings algorithm

Given g, to accomplish T, propose a
random g’ from a symmetric distribution on
Q(q,q"), and accept q' with probability

a(q'|q) = min (1 ((q ))) that rejects

relatively improbable steps.

If the Q variance is large, then w(q") will
often be small and q" will rarely be
accepted.

If the Q variance is small, ¢ will often be
accepted but it will take “forever” to
explore the typical set.
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Foundations of Hamiltonian MC
® There are many more directions obliquely off
the typical set than strictly within it. We want
the chain to stay in or close to the typical set.

® 1(q,p) = n(p|q)m(q) introduces momentum

p as an auxiliary parameter so that
marginalization projects the phase-space

¢

chain down to the desired typical set.
® [In physics, energy-conserving dynamics in a
phase space of twice as many dimensions

{(q,p)|H(q,p) = —logn(q,p) = E}.
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Phase space and Hamilton’s equations
® The 2D-phase-space trajectory (q,p) — ¢.(q,p) is given
d (2 _2\g=(2 _\k_(o2” _
byE(q'p) - (%’ E)q)H - (ap’ 6q)K (O’ aq)’
where K = —logm(p|q)andV = —logn(q) = H — K

are the effective kinetic and potential energies.
® Then by the chain rule -~

!
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dH Jd 0 d .
e (a—q,%)H -a(q,p) = 0, energy is

conserved by ¢, (also see Liouville's theorem).

® Now T(q, g") has been decomposed using w(p|q), ¢;
and q; = (q,p);.

® Successive T(q, q") < phase-space Markov chain.
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https://en.wikipedia.org/wiki/Liouville%27s_theorem_(Hamiltonian)
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Efficient HMC

® The parameter t and formulation of K

provide free parameters to be optimally

tuned. Superlinear Asymptotic
- - - - ——— - — - — - — >

[E—

® [onger t = more exploration of
H~Y(E), but also costs more
computation and may become redundant
after H~1(E) is explored.

® Generally t = T (g, p) should be chosen

Effective Sample Size

around when the ESS starts to plateau. 0
® ESS = ||(corr matrix) ||, according T (g, p)

to Leinster.
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https://golem.ph.utexas.edu/category/2014/12/effective_sample_size.html
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Efficient HMC (cont.) 10

® The parameter t and form of K provide free parameters to be optimally tuned.

® [t often makes sense to measure distance in Q using the Mahalanobis norm
(g—q)-M-(q—q"),where M = E,[(- —u) ® (- —p)] ™1 is the precision
(inverse covariance) matrix and u = E[].

® Then in order to conserve phase-space volume, one should measure momentum
differences by (p —p") - M~1 - (p — p").

: : : 1 _
® By connecting with zero-mean Gaussian, we’re led to K = Sp M™t.p+

\/log det2mM.

® Including M = M(q) = 9 X 9 V', the Hessian can help with variability on Q.
g dq daq
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Implementing HMC in practice

® Most numerical integrators create accumulating
deviation from H ™1 (E).

® Symplectic integrators still create error, but by
their conservation in phase space, it cannot
accumulate. The chain conserves a “shadow
Hamiltonian” exactly.

® [t can still happen that too coarse a time step € =

T /L can cause sudden divergence; but it’s a useful
indicator of strong H(q, p) curvature.
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