Hamiltonian Monte Carlo

AIMÉ FOURNIER (after MICHAEL BETANCOURT)

12.S592 Machine Learning with System Dynamics and Optimization2020 February 28

Massachus Institute of Technology

Outline

- Computing expectations by exploring probability distributions
- Markov chain Monte Carlo
 - Ideal behavior
 - Metropolis-Hastings algorithm
- Foundations of Hamiltonian MC
 - $\circ~$ Phase space and Hamilton's equations
- Efficient HMC
 - Natural geometry of phase space
- Implementing HMC in practice

Reference MICHAEL BETANCOURT (2018) "A Conceptual

Massachus Institute of Technology

rces Introduction to Hamiltonian Monte Carlo"

Computing expectations by exploring probability distributions

 Goal: estimate probabilistic expectations
 E_π[f] of functions f(q) on a Ddimensional sample space q ∈ Q, w.r.t. a
 probability distribution π(q).

 $\mathbb{E}_{\pi}[f] = \int_{Q} f(q)\pi(q) \mathrm{d}q$

- Typically $\pi(q)$ decreases quickly for large |q| (assuming mode at q = 0), but $dq = \prod_{i=1}^{D} dq_i \propto |q|^{D-1} d|q|$.
- The <u>typical set</u> contributes most to $\mathbb{E}_{\pi}[f]$.

Markov chain Monte Carlo

• Typical sets may have complicated geometry for high *D*.

Massachusetts Institute of Technology Markov chains (q_1, \ldots, q_L) are the sequences created by Markov transitions $\mathbb{T}(q,q')$ on Q. If \mathbb{T} preserves $\pi(q)$, then q_L approaches the typical set.

Ideal behavior

- Initial chain yields biased estimator $\hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(q_l)$.
- As chain explores typical set, the bias reduces quickly.
- Further bias reduction takes very long chains.

oratory

Metropolis-Hastings algorithm

Given q, to accomplish T, propose a random q' from a symmetric distribution on Q(q,q'), and accept q' with probability

 $a(q'|q) = \min\left(1, \frac{\pi(q')}{\pi(q)}\right)$ that rejects relatively improbable steps.

- If the Q variance is large, then π(q') will often be small and q' will rarely be accepted.
- If the Q variance is small, q' will often be accepted but it will take "forever" to explore the typical set.

Foundations of Hamiltonian MC

- There are many more directions obliquely <u>off</u> the typical set than strictly within it. We want the chain to stay in or close to the typical set.
- π(q, p) = π(p|q)π(q) introduces momentum
 p as an auxiliary parameter so that
 marginalization projects the phase-space
 chain down to the desired typical set.
- In physics, energy-conserving dynamics in a phase space of twice as many dimensions (q, p) are constrained to a manifold H⁻¹(E) = {(q, p)|H(q, p) = -log π(q, p) = E}.

Phase space and Hamilton's equations

• The 2*D*-phase-space trajectory $(q, p) \mapsto \phi_t(q, p)$ is given

by
$$\frac{d}{dt}(q, p) = \left(\frac{\partial}{\partial p}, -\frac{\partial}{\partial q}\right) H = \left(\frac{\partial}{\partial p}, -\frac{\partial}{\partial q}\right) K - \left(0, \frac{\partial V}{\partial q}\right),$$

where $K = -\log \pi(p|q)$ and $V = -\log \pi(q) = H - K$
are the effective kinetic and potential energies.

• Then by the chain rule

$$\frac{dH}{dt} = \left(\frac{\partial}{\partial q}, \frac{\partial}{\partial p}\right) H \cdot \frac{d}{dt}(q, p) = 0, \text{ energy is}$$

conserved by ϕ_t (also see Liouville's theorem)

- Now $\mathbb{T}(q,q')$ has been decomposed using $\pi(p|q), \phi_t$ and $q_i = (q,p)_i$.
- Successive $\mathbb{T}(q, q') \Leftrightarrow$ phase-space Markov chain.

Slide 8

Efficient HMC

- The parameter *t* and formulation of *K* provide free parameters to be optimally tuned.
- Longer t ⇒ more exploration of H⁻¹(E), but also costs more computation and may become redundant after H⁻¹(E) is explored.
- Generally t = T(q, p) should be chosen around when the ESS starts to plateau.
- ESS $\approx \|(\text{corr matrix})^{-1}\|_{\text{F}}$, <u>according</u> <u>to Leinster</u>.

T (q, p)

Efficient HMC (cont.)

- The parameter *t* and form of *K* provide free parameters to be optimally tuned.
- It often makes sense to measure distance in Q using the Mahalanobis norm $(q q') \cdot M \cdot (q q')$, where $M = \mathbb{E}_{\pi}[(\cdot -\mu) \otimes (\cdot -\mu)]^{-1}$ is the precision (inverse covariance) matrix and $\mu = \mathbb{E}_{\pi}[\cdot]$.
- Then in order to conserve phase-space volume, one should measure momentum differences by $(p p') \cdot M^{-1} \cdot (p p')$.
- By connecting with zero-mean Gaussian, we're led to $K = \frac{1}{2}p \cdot M^{-1} \cdot p + \sqrt{\log \det 2\pi M}$.
- Including $M = M(q) \approx \frac{\partial}{\partial q} \otimes \frac{\partial}{\partial q} V$, the Hessian can help with variability on Q.

Implementing HMC in practice

- Most numerical integrators create accumulating deviation from $H^{-1}(E)$.
- Symplectic integrators still create error, but by their conservation in phase space, it cannot accumulate. The chain conserves a "shadow Hamiltonian" exactly.
- It can still happen that too coarse a time step ε = T/L can cause sudden divergence; but it's a useful indicator of strong H(q, p) curvature.

Massachusetts Institute of Fechnology

